On the equivalence problem for toric contact structures onS3-bundles overS2
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولVirasoro Constraints for Toric Bundles
We show that the Virasoro conjecture in Gromov–Witten theory holds for the the total space of a toric bundle E → B if and only if it holds for the base B. The main steps are: (i) we establish a localization formula that expresses Gromov–Witten invariants of E, equivariant with respect to the fiberwise torus action, in terms of genus-zero invariants of the toric fiber and all-genus invariants of...
متن کاملSymplectic fillability of tight contact structures on torus bundles
We study weak versus strong symplectic fillability of some tight contact structures on torus bundles over the circle. In particular, we prove that almost all of these tight contact structures are weakly, but not strongly symplectically fillable. For the 3–torus this theorem was established by Eliashberg. AMS Classification 53D35; 57M50, 57R65
متن کاملCohomology of toric bundles
Let p : E−→B be a principal bundle with fibre and structure group the torus T ∼ = (C *) n over a topological space B. Let X be a nonsingular projective T-toric variety. One has the X-bundle π : E(X)−→B where E(X) = E × T X, π([e, x]) = p(e). This is a Zariski locally trivial fibre bundle in case p : E−→B is algebraic. The purpose of this note is to describe (i) the singular cohomology ring of E...
متن کاملCompletely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S × S
I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S2×S3. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Y , discovered by physicists in [GMSW04a, MS05, MS06] by showing that Y ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2014
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2014.267.277